Giessen coupled-channel results for pion and photon induced reactions

V. Shklyar U. Mosel H. Lenske

Institut für Theoretische Physik Universität Giessen

Vitaly Shkiyar

Partial wave version of optical theorem

constraints on partial wave cross sections

$$Im T^{JP}_{\pi N \to \pi N} = \frac{k^2}{4\pi} (\sigma^{JP}_{\pi N \to \pi N} + \sigma^{JP}_{\pi N \to 2\pi N} + \sigma^{JP}_{\pi N \to \eta N} + \sigma^{JP}_{\pi N \to \omega N} + \sigma^{JP}_{\pi N \to K\Lambda} + \sigma^{JP}_{\pi N \to K\Sigma} + ...)$$

all reaction data are linked \rightarrow need for coupled-channel unitary analysis Vitaly Shkiyar

Giessen model. PRC71, 055206 (2005)

Bethe-Salpeter in K-matrix: dynamical model: based on eff. L_{mBB}

Vitaly Shkiyar

K-matrix approximation:

To solve Bethe-Salpeter equation take the imaginary part of the propagator:

$$\int dq rac{1}{q^2-m^2\pm iarepsilon}=P\int dq rac{1}{q^2-m^2}\mp i\pi\int dq\delta(q^2-m^2)$$

where all intermediate particles are on-shell.

Vitaly Shk<u>lyar</u>

main features

- neglect real part of self energy
- Minkowsky space
- resonance parameters: coupling constants at interaction Lagrangians

$(\gamma, \pi) N \to K \Lambda$. Giessen model PRC72:015210

Vitaly Shkiyar

$K\Lambda$ -production. Reaction mechanism

Giessen PRC72, 015210 (2005). $\gamma p \rightarrow K^+ \Lambda$

Resonance contributions: $S_{11}(1650)$ $P_{13}(1720)$ and $P_{13}(1900)$

L _{21,25}	$R_{K\Lambda}(C)$	$R_{K\Lambda}(S)$
$S_{11}(1650)$	3.2(+)	4.6(+)
$P_{13}(1720)$	4.6(+)	4.0(+)
$P_{13}(1900)$	2.4(+)	2.3(+)

Table: N^* decay ratios to $K\Lambda$

Vitaly Shkiyar

Giessen model. Results for the $(\pi, \gamma)N \rightarrow \omega N$ reactions

Combined analysis \implies more constraint on resonance properties. Giessen model, PRC 71:055206,2005

 $\pi N \rightarrow \omega N$

 $\gamma N \rightarrow \omega N$

Vitaly Shkiyar

Giessen model. Results for $(\pi, \gamma)N \rightarrow \omega N$

Giessen model, PRC 71:055206,2005

- *P*₁₃: interference between resonance and background
- strong $N^*(\frac{5}{2})$ coupling to ωN
- D₁₃(1520) minor contributions

Vitaly Shk<u>lyar</u>

- strong Born and $\pi^0\text{-exchange}$ contributions
- D_{13} is due to π^0 -exchange

 $\pi^- p \rightarrow \eta n$: Solution from the Giessen coupled-channel analysis V.Shklyar et al, PRC.71. 055206 (2005).

Vitaly Shklyar

Results for the $\gamma p \rightarrow \eta p$

 $\frac{d\sigma}{d\Omega}$ as a function of $\cos(\theta)$

 $\frac{d\sigma}{d\Omega}$ as a function of W

The structure at 1.67 GeV in $\gamma p \rightarrow \eta p$ is due to $S_{11}(1650)$ Shklyar et al PLB650, 172(2007)

no need for any exotic state!

Vitaly Shklyar

Giessen model

 $S_{11}(1535)$ dominates both $\gamma p \rightarrow \eta p$ and $\pi^- p \rightarrow \eta n$ reactions

- strong $S_{11}(1535)$ excitation
- kink structure at 1.72 GeV is due to the ωN threshold

Vitaly Shk<u>lyar</u>

 seems no room for other contributions

- destructive effect from *S*₁₁(1650)
- above 1.6 GeV P₁₁(1710) consistent with πN inelasticity

 $\gamma n^* \rightarrow \eta n$

Vitaly Shkiyar

- quasi-free neutron: resonance-like structure at 1.67 GeV
- confirmed by B.Krusche, I. Jaegle at MAMI. CB-ELSA

Possible explanations

- Polyakov, Strakovsky, Arndt, Workman; Polyakov Kuznetzov: pentaguark parthner
- Shklyar, Mosel, Lenske: well known $S_{11}(1650), P_{11}(1710)$
- M. Doering: cusp in $K\Sigma$

Giessen Model PLB650, 172(2007): total $\gamma n \rightarrow \eta n$ cross section

Vitaly Shkiyar

$$egin{aligned} & \mathcal{A}_{1/2}^n(1650) = -9 imes 10^{-3} \mathrm{GeV}^{-rac{1}{2}} \ & \mathcal{A}_{1/2}^n(1710) = 24 imes 10^{-3} \mathrm{GeV}^{-rac{1}{2}} \end{aligned}$$

$\pi^- p \rightarrow \eta n$

Giessen Model: Shklyar, Mosel, Lenske PLB650, 172(2007) vs. data Richards etl al PR 1, 10 (1970)

- Richards data show an excess structure at 1.7 GeV
- hard to make conclusion: the data is of poor quality
- Giessen calculations: destructive $S_{11}(1535)$ and $S_{11}(1650)$ interference; $P_{11}(1710)$ excitation.

Vitaly Shklyar

Next step: improve description of the $2\pi N$ channel

so far: N^* decay into 'generic' 2π channel

- take $2\pi N$ inelastic flux into account
- $N^* \rightarrow 2\pi N$ couplings constrained by $\sigma_{\pi N \rightarrow 2\pi N}^{JI}$

Vitaly Shkiyar

New multichannel problem

$$T^{\mathrm{JI}}_{\pi\pi} = K^{\mathrm{JI}}_{\pi\pi} + \mathrm{i} K^{\mathrm{JI}}_{\pi\pi} T^{\mathrm{JI}}_{\pi\pi}$$

$$+\mathrm{i} \int_{4m_{\pi}^{2}}^{(\sqrt{s}-m_{N})^{2}} d\mu_{\rho}^{\prime 2} K_{\pi\rho}^{\mathrm{JI}}(\mu_{\rho}^{\prime 2}) A_{\rho}(\mu_{\rho}^{\prime 2}) T_{\rho\pi}^{\mathrm{JI}}(\mu_{\rho}^{\prime 2})$$

summation instead of integration

$$T_{\pi\pi}^{\mathrm{JI}} = \mathcal{K}_{\pi\pi}^{\mathrm{JI}} + \mathrm{i}\mathcal{K}_{\pi\pi}^{\mathrm{JI}} T_{\pi\pi}^{\mathrm{JI}}$$
$$+ \mathrm{i} \sum_{m_{\rho_{i}}} 2m_{\rho_{i}} \Delta m_{\rho_{i}} \mathcal{K}_{\pi\rho_{i}}^{\mathrm{JI}}(m_{\rho_{i}}^{2}) \mathcal{A}_{\rho_{i}}(m_{\rho_{i}}^{2}) \mathcal{T}_{\rho_{i}\pi}^{\mathrm{JI}}(m_{\rho_{i}}^{2})$$

Vitaly Shklyar

N(1520) D_{13} state

Manley analysis:

• distribution:

Giessen: non-symmetric Manley : symmetric

- Gi Model: no contributions below 1.4 GeV
- Manley: no *ρ*-spectral function: should be revised

$\pi N \rightarrow 2\pi N$

Summary of the $\pi N \rightarrow 2\pi N$ reactions

- strong contributions to the πN inelasticity
- important for understanding for ρ -meson dynamics and resonance couplings
- could solve many puzzles in non-strange baryon spectroscopy: origin and properties of the $P_{11}(1440)$, $P_{11}(1710)$, $D_{13}(1520)$ etc.

Theory

• analysis of Manley et. al. should be revised!

Experiment

• need for new measurements $\pi N \rightarrow 2\pi N$ in region 1.2...2.GeV \rightarrow challenge for HADES collaboration pion beams at HADES contact piotr.salabura@uj.edu.pl

Vitaly Shklyar

Why $D_{15}(1675)$ with $\Gamma_{\eta N} = 17\%$ is a bad

Optical theorem for $\pi N \rightarrow \pi N$ scattering

$$(J+\frac{1}{2})ImT_{\pi N\to\pi N}^{\frac{5}{2}+\frac{1}{2}} = \frac{k^2}{4\pi} (\sigma_{\pi N\to\pi N}^{\frac{5}{2}+\frac{1}{2}} + \sigma_{\pi N\to2\pi N}^{\frac{5}{2}+\frac{1}{2}} + \sigma_{\pi N\to\eta N}^{\frac{5}{2}+\frac{1}{2}})$$

Vitaly Shklyar, Eta meson production in the resonance energy region

Vitaly Shkiyar

Giessen coupled-channel results for pion and photon induced rea

p. 1

Previous analysis: Penner and Mosel RRC66, 055211 (2002) no spin- $\frac{5}{2}$ resonances !

Vitaly Shkiyar

Vitaly Shkiyar

New results: V. Shklyar et al .PRC71, 055206 (2005) with spin- $\frac{5}{2}$ resonances ! But! It is so important for the ωN production ?

Optical theorem:

$$ImT_{\pi N\to\pi N}\sim\sigma_{\pi N\to\omega N}+...$$

Results for pion-induced reactions

Vitaly Shklyar , Nucleon resonances in πN and γN scattering.

Vitaly Shkiyar

Giessen coupled-channel results for pion and photon induced rea

p. 22

πN inelasticity and inelastic channels

Optical theorem :

$$\begin{bmatrix} \frac{4\pi}{k_{cm}^{2}} ImT_{\pi N}^{JI} - \sigma_{\pi N \to \pi N}^{JI} \\ = \sigma_{\pi N \to 2\pi N}^{JI} + \sigma_{\pi N \to \eta N}^{JI} \\ + \sigma_{\pi N \to \omega N}^{JI} + \sigma_{\pi N \to K \Lambda}^{JI} + \sigma_{\pi N \to K \Sigma}^{JI} \end{bmatrix}$$

- $-\pi N$ inelasticity
- $2\pi N$ partial wave cross sections

Vitaly Shklyar , Nucleon resonances in πN and γN scattering.

p. 23

Vitaly Shklyar Giessen

Giessen model. Pion photoproduction

neutron multipoles

Combined analysis of $(\pi, \gamma)N \to (\pi, \gamma)N$ gives a strong constraint on extracted resonance parameters

Vitaly Shklyar, Giessen coupled-channel model for baryon resonance analysis

p. 21

EBIG-

'ERSIT/

Vitaly Shkiyar